WAIC and WBIC with Python Stan WAIC and WBIC with Python Stan

WAIC and WBIC with Python Stan

100 Exercises for Building Logic

    • US$39.99
    • US$39.99

출판사 설명

Master the art of machine learning and data science by diving into the essence of mathematical logic with this comprehensive textbook. This book focuses on the widely applicable information criterion (WAIC), also described as the Watanabe-Akaike information criterion, and the widely applicable Bayesian information criterion (WBIC), also described as the Watanabe Bayesian information criterion. This book expertly guides you through relevant mathematical problems while also providing hands-on experience with programming in Python and Stan. Whether you’re a data scientist looking to refine your model selection process or a researcher who wants to explore the latest developments in Bayesian statistics, this accessible guide will give you a firm grasp of Watanabe Bayesian Theory.
The key features of this indispensable book include:
A clear and self-contained writing style, ensuring ease of understanding for readers at various levels of expertise.100 carefully selected exercises accompanied by solutions in the main text, enabling readers to effectively gauge their progress and comprehension.A comprehensive guide to Sumio Watanabe’s groundbreaking Bayes theory, demystifying a subject once considered too challenging even for seasoned statisticians.Detailed source programs and Stan codes that will enhance readers’ grasp of the mathematical concepts presented.A streamlined approach to algebraic geometry topics in Chapter 6, making Bayes theory more accessible and less daunting.
Embark on your machine learning and data science journey with this essential textbook and unlock the full potential of WAIC and WBIC today!

장르
컴퓨터 및 인터넷
출시일
2023년
12월 20일
언어
EN
영어
길이
254
페이지
출판사
Springer Nature Singapore
판매자
Springer Nature B.V.
크기
42.6
MB
WAIC and WBIC with R Stan WAIC and WBIC with R Stan
2023년
Kernel Methods for Machine Learning with Math and Python Kernel Methods for Machine Learning with Math and Python
2022년
Kernel Methods for Machine Learning with Math and R Kernel Methods for Machine Learning with Math and R
2022년
Sparse Estimation with Math and Python Sparse Estimation with Math and Python
2021년
Sparse Estimation with Math and R Sparse Estimation with Math and R
2021년
Statistical Learning with Math and Python Statistical Learning with Math and Python
2021년