Walsh Equiconvergence of Complex Interpolating Polynomials Walsh Equiconvergence of Complex Interpolating Polynomials

Walsh Equiconvergence of Complex Interpolating Polynomials

Amnon Jakimovski и другие
    • 99,99 $
    • 99,99 $

От издателя

This book is a collection of the various old and new results, centered around the following simple and beautiful observation of J.L. Walsh - If a function is analytic in a finite disc, and not in a larger disc, then the difference between the Lagrange interpolant of the function, at the roots of unity, and the partial sums of the Taylor series, about the origin, tends to zero in a larger disc than the radius of convergence of the Taylor series, while each of these operators converges only in the original disc. This book will be particularly useful for researchers in approximation and interpolation theory.

ЖАНР
Наука и природа
РЕЛИЗ
2007
16 мая
ЯЗЫК
EN
английский
ОБЪЕМ
309
стр.
ИЗДАТЕЛЬ
Springer Netherlands
ПРОДАВЕЦ
Springer Nature B.V.
РАЗМЕР
11
МБ
Multiple Integrals in the Calculus of Variations Multiple Integrals in the Calculus of Variations
2009
Nine Introductions in Complex Analysis - Revised Edition Nine Introductions in Complex Analysis - Revised Edition
2007
Bounded Analytic Functions Bounded Analytic Functions
2007
Value Distribution of Meromorphic Functions Value Distribution of Meromorphic Functions
2011
Number Theory Number Theory
2008
Topics in Operator Theory Topics in Operator Theory
2011