Walsh Equiconvergence of Complex Interpolating Polynomials Walsh Equiconvergence of Complex Interpolating Polynomials

Walsh Equiconvergence of Complex Interpolating Polynomials

Amnon Jakimovski và các tác giả khác
    • 99,99 US$
    • 99,99 US$

Lời Giới Thiệu Của Nhà Xuất Bản

This book is a collection of the various old and new results, centered around the following simple and beautiful observation of J.L. Walsh - If a function is analytic in a finite disc, and not in a larger disc, then the difference between the Lagrange interpolant of the function, at the roots of unity, and the partial sums of the Taylor series, about the origin, tends to zero in a larger disc than the radius of convergence of the Taylor series, while each of these operators converges only in the original disc. This book will be particularly useful for researchers in approximation and interpolation theory.

THỂ LOẠI
Khoa Học & Tự Nhiên
ĐÃ PHÁT HÀNH
2007
16 tháng 5
NGÔN NGỮ
EN
Tiếng Anh
ĐỘ DÀI
309
Trang
NHÀ XUẤT BẢN
Springer Netherlands
NGƯỜI BÁN
Springer Nature B.V.
KÍCH THƯỚC
11
Mb
Multiple Integrals in the Calculus of Variations Multiple Integrals in the Calculus of Variations
2009
Nine Introductions in Complex Analysis - Revised Edition Nine Introductions in Complex Analysis - Revised Edition
2007
Bounded Analytic Functions Bounded Analytic Functions
2007
Value Distribution of Meromorphic Functions Value Distribution of Meromorphic Functions
2011
Number Theory Number Theory
2008
Topics in Operator Theory Topics in Operator Theory
2011