Stable Klingen Vectors and Paramodular Newforms Stable Klingen Vectors and Paramodular Newforms
Lecture Notes in Mathematics

Stable Klingen Vectors and Paramodular Newforms

    • CHF 65.00
    • CHF 65.00

Beschreibung des Verlags

This book describes a novel approach to the study of Siegel modular forms of degree two with paramodular level. It introduces the family of stable Klingen congruence subgroups of GSp(4) and uses this family to obtain new relations between the Hecke eigenvalues and Fourier coefficients of paramodular newforms, revealing a fundamental dichotomy for paramodular representations. Among other important results, it includes a complete description of the vectors fixed by these congruence subgroups in all irreducible representations of GSp(4) over a nonarchimedean local field.
Siegel paramodular forms have connections with the theory of automorphic representations and the Langlands program, Galois representations, the arithmetic of abelian surfaces, and algorithmic number theory. Providing a useful standard source on the subject, the book will be of interest to graduate students and researchers working in the above fields.

GENRE
Wissenschaft und Natur
ERSCHIENEN
2023
27. Dezember
SPRACHE
EN
Englisch
UMFANG
379
Seiten
VERLAG
Springer Nature Switzerland
GRÖSSE
64.2
 MB
Relational Topology Relational Topology
2018
Finite Difference Methods for Fractional Diffusion Equations Finite Difference Methods for Fractional Diffusion Equations
2026
Cartesian Cubical Model Categories Cartesian Cubical Model Categories
2026
Numerical Methods for Metric Graphs Numerical Methods for Metric Graphs
2025
Relative Rearrangement Relative Rearrangement
2025
Global Logarithmic Deformation Theory Global Logarithmic Deformation Theory
2025