Geometry Driven Statistics Geometry Driven Statistics
    • USD 109.99

Descripción editorial

A timely collection of advanced, original material in the area of statistical methodology motivated by geometric problems, dedicated to the influential work of Kanti V. Mardia

This volume celebrates Kanti V. Mardia's long and influential career in statistics. A common theme unifying much of Mardia’s work is the importance of geometry in statistics, and to highlight the areas emphasized in his research this book brings together 16 contributions from high-profile researchers in the field.

Geometry Driven Statistics covers a wide range of application areas including directional data, shape analysis, spatial data, climate science, fingerprints, image analysis, computer vision and bioinformatics. The book will appeal to statisticians and others with an interest in data motivated by geometric considerations.
Summarizing the state of the art, examining some new developments and presenting a vision for the future, Geometry Driven Statistics will enable the reader to broaden knowledge of important research areas in statistics and gain a new appreciation of the work and influence of Kanti V. Mardia.

GÉNERO
Ciencia y naturaleza
PUBLICADO
2015
3 de septiembre
IDIOMA
EN
Inglés
EXTENSIÓN
432
Páginas
EDITORIAL
Wiley
VENDEDOR
John Wiley & Sons, Inc.
TAMAÑO
52.3
MB
Object Oriented Data Analysis Object Oriented Data Analysis
2021
Statistical Shape Analysis Statistical Shape Analysis
2016
Applied Time Series Analysis for the Social Sciences Applied Time Series Analysis for the Social Sciences
2025
Statistical Planning and Inference Statistical Planning and Inference
2025
Permutation Tests for Complex Data Permutation Tests for Complex Data
2025
Biostatistical Methods Biostatistical Methods
2014
An Introduction to Cochran-Mantel-Haenszel Testing and Nonparametric ANOVA An Introduction to Cochran-Mantel-Haenszel Testing and Nonparametric ANOVA
2023
Nonparametric Statistics with Applications to Science and Engineering with R Nonparametric Statistics with Applications to Science and Engineering with R
2022