Data Science Data Science

発行者による作品情報

It has never been easier for organizations to gather, store, and process data. Use of data science is driven by the rise of big data and social media, the development of high-performance computing, and the emergence of such powerful methods for data analysis and modeling as deep learning. Data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting non-obvious and useful patterns from large datasets. It is closely related to the fields of data mining and machine learning, but broader in scope. This book offers a brief history of the field, introduces fundamental data concepts, and describes the stages in a data science project. It considers data infrastructure and the challenges posed by integrating data from multiple sources, introduces the basics of machine learning, and discusses how to link machine learning expertise with real-world problems. The book also reviews ethical and legal issues, developments in data regulation, and computational approaches to preserving privacy. Finally, it considers the future impact of data science and offers principles for success in data science projects.

ジャンル
科学
ナレーター
Chris Sorensen
言語
EN
英語
ページ数
05:51
時間
発売日
2018年
4月13日
発行者
Ascent Audio
サイズ
294.3
MB
Algorithms (MIT Press Essential Knowledge) Algorithms (MIT Press Essential Knowledge)
2023年
Metadata (The MIT Press Essential Knowledge) Metadata (The MIT Press Essential Knowledge)
2015年
The Book (MIT Press Essential Knowledge) The Book (MIT Press Essential Knowledge)
2018年
The Internet Things (The MIT Press Essential Knowledge) The Internet Things (The MIT Press Essential Knowledge)
2015年
Spaceflight : A Concise History Spaceflight : A Concise History
2019年
Fake Photos Fake Photos
2019年