Data Science Data Science

発行者による作品情報

A concise introduction to the emerging field of data science, explaining its evolution, relation to machine learning, current uses, data infrastructure issues, and ethical challenges.
The goal of data science is to improve decision making through the analysis of data. Today data science determines the ads we see online, the books and movies that are recommended to us online, which emails are filtered into our spam folders, and even how much we pay for health insurance. This volume in the MIT Press Essential Knowledge series offers a concise introduction to the emerging field of data science, explaining its evolution, current uses, data infrastructure issues, and ethical challenges.

It has never been easier for organizations to gather, store, and process data. Use of data science is driven by the rise of big data and social media, the development of high-performance computing, and the emergence of such powerful methods for data analysis and modeling as deep learning. Data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting non-obvious and useful patterns from large datasets. It is closely related to the fields of data mining and machine learning, but broader in scope. This book offers a brief history of the field, introduces fundamental data concepts, and describes the stages in a data science project. It considers data infrastructure and the challenges posed by integrating data from multiple sources, introduces the basics of machine learning, and discusses how to link machine learning expertise with real-world problems. The book also reviews ethical and legal issues, developments in data regulation, and computational approaches to preserving privacy. Finally, it considers the future impact of data science and offers principles for success in data science projects.

ジャンル
コンピュータ/インターネット
発売日
2018年
4月13日
言語
EN
英語
ページ数
280
ページ
発行者
MIT Press
販売元
Penguin Random House LLC
サイズ
1.5
MB
Data Science For Dummies Data Science For Dummies
2021年
Data Science from Scratch Data Science from Scratch
2018年
Developing Analytic Talent Developing Analytic Talent
2014年
500 Data Analytics Interview Questions and Answers 500 Data Analytics Interview Questions and Answers
2020年
Information Governance Principles and Practices for a Big Data Landscape Information Governance Principles and Practices for a Big Data Landscape
2014年
Big Data For Dummies Big Data For Dummies
2013年
Deep Learning Deep Learning
2019年
Fundamentals of Machine Learning for Predictive Data Analytics, second edition Fundamentals of Machine Learning for Predictive Data Analytics, second edition
2020年
Recommendation Engines Recommendation Engines
2020年
Machine Learning, revised and updated edition Machine Learning, revised and updated edition
2021年
Computational Thinking Computational Thinking
2019年
Algorithms Algorithms
2020年
Understanding Beliefs Understanding Beliefs
2014年
Cybersecurity Cybersecurity
2021年
Critical Thinking Critical Thinking
2020年
Nihilism Nihilism
2019年
Artificial General Intelligence Artificial General Intelligence
2024年
Cloud Computing, revised and updated edition Cloud Computing, revised and updated edition
2023年
Pragmatism Pragmatism
2023年
Machine Learning, revised and updated edition Machine Learning, revised and updated edition
2021年