Deep Learning Deep Learning

発行者による作品情報

DEEP LEARNING FOR BEGINNERS: Get an accessible introduction to the artificial intelligence technology at the heart of the AI revolution—from driverless cars to speech recognition on mobile phones.

Deep learning is an artificial intelligence technology that enables computer vision, machine translation, AI games, driverless cars, and other applications. When we use consumer products from Google, Microsoft, Facebook, Apple, or Baidu, we are often interacting with a deep learning system. In this volume in the MIT Press Essential Knowledge series, computer scientist John Kelleher offers an accessible and concise but comprehensive introduction to the fundamental technology at the heart of the artificial intelligence revolution.

Kelleher explains that deep learning enables data-driven decisions by identifying and extracting patterns from large datasets. Its ability to learn from complex data makes deep learning ideally suited to take advantage of the rapid growth in big data and computational power. Kelleher also explains some of the basic concepts in deep learning, presents a history of advances in the field, and discusses the current state of the art. He describes the most important deep learning architectures—including autoencoders, recurrent neural networks, and long short-term networks—as well as such recent developments as Generative Adversarial Networks and capsule networks. He also provides a comprehensive (and comprehensible) introduction to the two fundamental algorithms in deep learning: gradient descent and backpropagation. Finally, Kelleher considers the future of deep learning—including major trends, possible developments, and significant challenges.

ジャンル
コンピュータ/インターネット
発売日
2019年
9月10日
言語
EN
英語
ページ数
296
ページ
発行者
MIT Press
販売元
Penguin Random House LLC
サイズ
6.9
MB
Deep Learning Deep Learning
2016年
Understanding Deep Learning Understanding Deep Learning
2023年
Deep Learning with Python, Second Edition Deep Learning with Python, Second Edition
2021年
Fundamentals of Machine Learning for Predictive Data Analytics, second edition Fundamentals of Machine Learning for Predictive Data Analytics, second edition
2020年
The Hundred-Page Machine Learning Book The Hundred-Page Machine Learning Book
2019年
Why Machines Learn Why Machines Learn
2024年
Data Science Data Science
2018年
Fundamentals of Machine Learning for Predictive Data Analytics, second edition Fundamentals of Machine Learning for Predictive Data Analytics, second edition
2020年
Machine Learning, revised and updated edition Machine Learning, revised and updated edition
2021年
Algorithms Algorithms
2020年
Neuroplasticity Neuroplasticity
2016年
The Technological Singularity The Technological Singularity
2015年
Turing's Vision Turing's Vision
2016年
AI Ethics AI Ethics
2020年
Critical Thinking Critical Thinking
2020年
Data Science Data Science
2018年
Nihilism Nihilism
2019年
Artificial General Intelligence Artificial General Intelligence
2024年
Cloud Computing, revised and updated edition Cloud Computing, revised and updated edition
2023年
Pragmatism Pragmatism
2023年