Machine Learning, revised and updated edition Machine Learning, revised and updated edition
The MIT Press Essential Knowledge series

Machine Learning, revised and updated edition

    • ¥2,200
    • ¥2,200

発行者による作品情報

MIT presents a concise primer on machine learning—computer programs that learn from data and the basis of applications like voice recognition and driverless cars.

No in-depth knowledge of math or programming required!
 
Today, machine learning underlies a range of applications we use every day, from product recommendations to voice recognition—as well as some we don’t yet use every day, including driverless cars. It is the basis for a new approach to artificial intelligence that aims to program computers to use example data or past experience to solve a given problem. In this volume in the MIT Press Essential Knowledge series, Ethem Alpaydin offers a concise and accessible overview of “the new AI.” This expanded edition offers new material on such challenges facing machine learning as privacy, security, accountability, and bias.
 
Alpaydin explains that as Big Data has grown, the theory of machine learning—the foundation of efforts to process that data into knowledge—has also advanced. He covers:
 
• The evolution of machine learning
• Important learning algorithms and example applications
• Using machine learning algorithms for pattern recognition
• Artificial neural networks inspired by the human brain
• Algorithms that learn associations between instances
• Reinforcement learning
• Transparency, explainability, and fairness in machine learning
• The ethical and legal implicates of data-based decision making
 
A comprehensive introduction to machine learning, this book does not require any previous knowledge of mathematics or programming—making it accessible for everyday readers and easily adoptable for classroom syllabi.

ジャンル
コンピュータ/インターネット
発売日
2021年
8月17日
言語
EN
英語
ページ数
280
ページ
発行者
MIT Press
販売元
Penguin Random House LLC
サイズ
1.6
MB
Machine Learning For Dummies Machine Learning For Dummies
2021年
Machine Learning for Beginners Machine Learning for Beginners
2018年
Deep Learning with Python, Second Edition Deep Learning with Python, Second Edition
2021年
Neural Networks Neural Networks
2018年
Artificial Intelligence For Dummies Artificial Intelligence For Dummies
2024年
500 Artificial Intelligence (AI) Interview Questions and Answers 500 Artificial Intelligence (AI) Interview Questions and Answers
2020年
Fundamentals of Probability and Statistics for Machine Learning Fundamentals of Probability and Statistics for Machine Learning
2025年
Introduction to Machine Learning, fourth edition Introduction to Machine Learning, fourth edition
2020年
Recommendation Engines Recommendation Engines
2020年
Understanding Beliefs Understanding Beliefs
2014年
Cybersecurity Cybersecurity
2021年
Deep Learning Deep Learning
2019年
Artificial General Intelligence Artificial General Intelligence
2024年
Data Science Data Science
2018年
Critical Thinking Critical Thinking
2020年
Data Science Data Science
2018年
Nihilism Nihilism
2019年
Artificial General Intelligence Artificial General Intelligence
2024年
Cloud Computing, revised and updated edition Cloud Computing, revised and updated edition
2023年
Pragmatism Pragmatism
2023年