Build a Large Language Model (From Scratch) Build a Large Language Model (From Scratch)

発行者による作品情報

How to implement LLM attention mechanisms and GPT-style transformers.

In Build a Large Language Model (from Scratch) bestselling author Sebastian Raschka guides you step by step through creating your own LLM. Each stage is explained with clear text, diagrams, and examples. You’ll go from the initial design and creation, to pretraining on a general corpus, and on to fine-tuning for specific tasks.

Build a Large Language Model (from Scratch) teaches you how to:

• Plan and code all the parts of an LLM
• Prepare a dataset suitable for LLM training
• Fine-tune LLMs for text classification and with your own data
• Use human feedback to ensure your LLM follows instructions
• Load pretrained weights into an LLM

Build a Large Language Model (from Scratch) takes you inside the AI black box to tinker with the internal systems that power generative AI. As you work through each key stage of LLM creation, you’ll develop an in-depth understanding of how LLMs work, their limitations, and their customization methods. Your LLM can be developed on an ordinary laptop, and used as your own personal assistant.

About the technology

Physicist Richard P. Feynman reportedly said, “I don’t understand anything I can’t build.” Based on this same powerful principle, bestselling author Sebastian Raschka guides you step by step as you build a GPT-style LLM that you can run on your laptop. This is an engaging book that covers each stage of the process, from planning and coding to training and fine-tuning.

About the book

Build a Large Language Model (From Scratch) is a practical and eminently-satisfying hands-on journey into the foundations of generative AI. Without relying on any existing LLM libraries, you’ll code a base model, evolve it into a text classifier, and ultimately create a chatbot that can follow your conversational instructions. And you’ll really understand it because you built it yourself!

What's inside

• Plan and code an LLM comparable to GPT-2
• Load pretrained weights
• Construct a complete training pipeline
• Fine-tune your LLM for text classification
• Develop LLMs that follow human instructions

About the reader

Readers need intermediate Python skills and some knowledge of machine learning. The LLM you create will run on any modern laptop and can optionally utilize GPUs.

About the author

Sebastian Raschka, PhD, is an LLM Research Engineer with over a decade of experience in artificial intelligence. His work spans industry and academia, including implementing LLM solutions as a senior engineer at Lightning AI and teaching as a statistics professor at the University of Wisconsin–Madison.

Sebastian collaborates with Fortune 500 companies on AI solutions and serves on the Open Source Board at University of Wisconsin–Madison. He specializes in LLMs and the development of high-performance AI systems, with a deep focus on practical, code-driven implementations. He is the author of the bestselling books Machine Learning with PyTorch and Scikit-Learn, and Machine Learning Q and AI.

The technical editor on this book was David Caswell.

Table of Contents

1 Understanding large language models
2 Working with text data
3 Coding attention mechanisms
4 Implementing a GPT model from scratch to generate text
5 Pretraining on unlabeled data
6 Fine-tuning for classification
7 Fine-tuning to follow instructions
A Introduction to PyTorch
B References and further reading
C Exercise solutions
D Adding bells and whistles to the training loop
E Parameter-efficient fine-tuning with LoRA

ジャンル
コンピュータ/インターネット
発売日
2024年
10月29日
言語
EN
英語
ページ数
368
ページ
発行者
Manning
販売元
Simon & Schuster Digital Sales LLC
サイズ
15.6
MB
Deep Learning with Python, Second Edition Deep Learning with Python, Second Edition
2021年
Machine Learning For Dummies Machine Learning For Dummies
2021年
Introduction to Artificial Intelligence for Security Professionals Introduction to Artificial Intelligence for Security Professionals
2017年
The Hundred-Page Machine Learning Book The Hundred-Page Machine Learning Book
2019年
Deep Learning for Beginners Deep Learning for Beginners
2018年
Deep Learning Deep Learning
2016年
[第3版]Python機械学習プログラミング 達人データサイエンティストによる理論と実践 [第3版]Python機械学習プログラミング 達人データサイエンティストによる理論と実践
2020年
Python機械学習プログラミング PyTorch&scikit-learn編 Python機械学習プログラミング PyTorch&scikit-learn編
2022年
つくりながら学ぶ!LLM 自作入門 つくりながら学ぶ!LLM 自作入門
2025年
Machine Learning mit Python und Keras, TensorFlow 2 und Scikit-learn Machine Learning mit Python und Keras, TensorFlow 2 und Scikit-learn
2021年
Stwórz własne AI. Jak od podstaw zbudować duży model językowy Stwórz własne AI. Jak od podstaw zbudować duży model językowy
2025年
Machine Learning Q and AI Machine Learning Q and AI
2024年
Deep Learning with Python, Second Edition Deep Learning with Python, Second Edition
2021年
Develop in Swift AP CS Principles Develop in Swift AP CS Principles
2024年
The Psychology of Money The Psychology of Money
2020年
Develop in Swift Fundamentals Develop in Swift Fundamentals
2021年
Develop in Swift Explorations Develop in Swift Explorations
2021年
Develop in Swift Fundamentals Develop in Swift Fundamentals
2021年
Build a Frontend Web Framework (From Scratch) Build a Frontend Web Framework (From Scratch)
2024年
Build an Orchestrator in Go (From Scratch) Build an Orchestrator in Go (From Scratch)
2024年