Hands-On Deep Learning with R Hands-On Deep Learning with R

Hands-On Deep Learning with R

A practical guide to designing, building, and improving neural network models using R

    • $27.99
    • $27.99

Publisher Description

Explore and implement deep learning to solve various real-world problems using modern R libraries such as TensorFlow, MXNet, H2O, and Deepnet

Key Features
Understand deep learning algorithms and architectures using R and determine which algorithm is best suited for a specific problem

Improve models using parameter tuning, feature engineering, and ensembling

Apply advanced neural network models such as deep autoencoders and generative adversarial networks (GANs) across different domains

Book Description

Deep learning enables efficient and accurate learning from a massive amount of data. This book will help you overcome a number of challenges using various deep learning algorithms and architectures with R programming.


This book starts with a brief overview of machine learning and deep learning and how to build your first neural network. You'll understand the architecture of various deep learning algorithms and their applicable fields, learn how to build deep learning models, optimize hyperparameters, and evaluate model performance. Various deep learning applications in image processing, natural language processing (NLP), recommendation systems, and predictive analytics will also be covered. Later chapters will show you how to tackle recognition problems such as image recognition and signal detection, programmatically summarize documents, conduct topic modeling, and forecast stock market prices. Toward the end of the book, you will learn the common applications of GANs and how to build a face generation model using them. Finally, you'll get to grips with using reinforcement learning and deep reinforcement learning to solve various real-world problems.


By the end of this deep learning book, you will be able to build and deploy your own deep learning applications using appropriate frameworks and algorithms.

What you will learn
Design a feedforward neural network to see how the activation function computes an output

Create an image recognition model using convolutional neural networks (CNNs)

Prepare data, decide hidden layers and neurons and train your model with the backpropagation algorithm

Apply text cleaning techniques to remove uninformative text using NLP

Build, train, and evaluate a GAN model for face generation

Understand the concept and implementation of reinforcement learning in R

Who this book is for

This book is for data scientists, machine learning engineers, and deep learning developers who are familiar with machine learning and are looking to enhance their knowledge of deep learning using practical examples. Anyone interested in increasing the efficiency of their machine learning applications and exploring various options in R will also find this book useful. Basic knowledge of machine learning techniques and working knowledge of the R programming language is expected.

GENRE
Computers & Internet
RELEASED
2020
April 24
LANGUAGE
EN
English
LENGTH
330
Pages
PUBLISHER
Packt Publishing
SELLER
Ingram DV LLC
SIZE
13.2
MB
Hands-on Machine Learning with Python Hands-on Machine Learning with Python
2022
Applied Deep Learning with Keras Applied Deep Learning with Keras
2019
The Deep Learning with PyTorch Workshop The Deep Learning with PyTorch Workshop
2020
Keras 2.x Projects Keras 2.x Projects
2018
The TensorFlow Workshop The TensorFlow Workshop
2021
Hands-On Deep Learning Architectures with Python Hands-On Deep Learning Architectures with Python
2019