Introduction to Applied Bayesian Statistics and Estimation for Social Scientists Introduction to Applied Bayesian Statistics and Estimation for Social Scientists
Statistics for Social and Behavioral Sciences

Introduction to Applied Bayesian Statistics and Estimation for Social Scientists

    • $139.99
    • $139.99

Publisher Description

Introduction to Applied Bayesian Statistics and Estimation for Social Scientists covers the complete process of Bayesian statistical analysis in great detail from the development of a model through the process of making statistical inference. The key feature of this book is that it covers models that are most commonly used in social science research, including the linear regression model, generalized linear models, hierarchical models, and multivariate regression models, and it thoroughly develops each real-data example in painstaking detail.

The first part of the book provides a detailed introduction to mathematical statistics and the Bayesian approach to statistics, as well as a thorough explanation of the rationale for using simulation methods to construct summaries of posterior distributions. Markov chain Monte Carlo (MCMC) methods—including the Gibbs sampler and the Metropolis-Hastings algorithm—are then introduced as general methods for simulating samples from distributions. Extensive discussion of programming MCMC algorithms, monitoring their performance, and improving them is provided before turning to the larger examples involving real social science models and data.

Scott M. Lynch is an associate professor in the Department of Sociology and Office of Population Research at Princeton University. His substantive research interests are in changes in racial and socioeconomic inequalities in health and mortality across age and time. His methodological interests are in the use of Bayesian stastistics in sociology and demography generally and in multistate life table methodology specifically.

GENRE
Nonfiction
RELEASED
2007
June 30
LANGUAGE
EN
English
LENGTH
387
Pages
PUBLISHER
Springer New York
SELLER
Springer Nature B.V.
SIZE
8.2
MB
Introduction to Bayesian Econometrics: Second Edition Introduction to Bayesian Econometrics: Second Edition
2012
Bayesian Statistical Methods Bayesian Statistical Methods
2019
Nonparametric Statistics with Applications to Science and Engineering with R Nonparametric Statistics with Applications to Science and Engineering with R
2022
Introduction to Bayesian Estimation and Copula Models of Dependence Introduction to Bayesian Estimation and Copula Models of Dependence
2017
Practical Bayesian Inference Practical Bayesian Inference
2017
Introduction to Bayesian Statistics Introduction to Bayesian Statistics
2016
The Basics of Item Response Theory Using R The Basics of Item Response Theory Using R
2017
Statistics for Lawyers Statistics for Lawyers
2015
Missing Data Missing Data
2012
Linking and Aligning Scores and Scales Linking and Aligning Scores and Scales
2007
Trends and Challenges in Categorical Data Analysis Trends and Challenges in Categorical Data Analysis
2023
Configural Frequency Analysis Configural Frequency Analysis
2022