Nonparametric Statistics with Applications to Science and Engineering with R Nonparametric Statistics with Applications to Science and Engineering with R
Wiley Series in Probability and Statistics

Nonparametric Statistics with Applications to Science and Engineering with R

Paul Kvam and Others
    • $114.99
    • $114.99

Publisher Description

NONPARAMETRIC STATISTICS WITH APPLICATIONS TO SCIENCE AND ENGINEERING WITH R
Introduction to the methods and techniques of traditional and modern nonparametric statistics, incorporating R code

Nonparametric Statistics with Applications to Science and Engineering with R presents modern nonparametric statistics from a practical point of view, with the newly revised edition including custom R functions implementing nonparametric methods to explain how to compute them and make them more comprehensible.

Relevant built-in functions and packages on CRAN are also provided with a sample code. R codes in the new edition not only enable readers to perform nonparametric analysis easily, but also to visualize and explore data using R’s powerful graphic systems, such as ggplot2 package and R base graphic system.

The new edition includes useful tables at the end of each chapter that help the reader find data sets, files, functions, and packages that are used and relevant to the respective chapter. New examples and exercises that enable readers to gain a deeper insight into nonparametric statistics and increase their comprehension are also included.

Some of the sample topics discussed in Nonparametric Statistics with Applications to Science and Engineering with R include:
Basics of probability, statistics, Bayesian statistics, order statistics, Kolmogorov–Smirnov test statistics, rank tests, and designed experiments Categorical data, estimating distribution functions, density estimation, least squares regression, curve fitting techniques, wavelets, and bootstrap sampling EM algorithms, statistical learning, nonparametric Bayes, WinBUGS, properties of ranks, and Spearman coefficient of rank correlation Chi-square and goodness-of-fit, contingency tables, Fisher exact test, MC Nemar test, Cochran’s test, Mantel–Haenszel test, and Empirical Likelihood
Nonparametric Statistics with Applications to Science and Engineering with R is a highly valuable resource for graduate students in engineering and the physical and mathematical sciences, as well as researchers who need a more comprehensive, but succinct understanding of modern nonparametric statistical methods.

GENRE
Science & Nature
RELEASED
2022
October 6
LANGUAGE
EN
English
LENGTH
448
Pages
PUBLISHER
Wiley
SELLER
John Wiley & Sons, Inc.
SIZE
272
MB
Statistical Data Analytics Statistical Data Analytics
2015
Introduction to Applied Bayesian Statistics and Estimation for Social Scientists Introduction to Applied Bayesian Statistics and Estimation for Social Scientists
2007
Bayesian Statistics for Experimental Scientists Bayesian Statistics for Experimental Scientists
2020
A User's Guide to Business Analytics A User's Guide to Business Analytics
2016
Statistical Methods (Enhanced Edition) Statistical Methods (Enhanced Edition)
2003
Statistics Statistics
2020
Applied Logistic Regression Applied Logistic Regression
2013
Machine Learning Machine Learning
2018
Introduction to Linear Regression Analysis Introduction to Linear Regression Analysis
2021
Categorical Data Analysis Categorical Data Analysis
2013
Statistical Rules of Thumb Statistical Rules of Thumb
2011
Applied Survival Analysis Applied Survival Analysis
2011