Practical Fairness Practical Fairness

Practical Fairness

    • ٥٫٠ - ١ تقييم
    • ‏42٫99 US$
    • ‏42٫99 US$

وصف الناشر

Fairness is an increasingly important topic as machine learning and AI more generally take over the world. While this is an active area of research, many realistic best practices are emerging at all steps along the data pipeline, from data selection and preprocessing to blackbox model audits. This book will guide you through the technical, legal, and ethical aspects of making your code fair and secure while highlighting cutting edge academic research and ongoing legal developments related to fairness and algorithms.

There is mounting evidence that the widespread deployment of machine learning and artificial intelligence in business and government is reproducing the same biases we are trying to fight in the real world. For this reason, fairness is an increasingly important consideration for the data scientist. Yet discussions of what fairness means in terms of actual code are few and far between. This code will show you how to code fairly as well as cover basic concerns related to data security and privacy from a fairness perspective.

النوع
كمبيوتر وإنترنت
تاريخ النشر
٢٠٢٠
١ ديسمبر
اللغة
EN
الإنجليزية
عدد الصفحات
٣٤٦
الناشر
O'Reilly Media
البائع
O Reilly Media, Inc.
الحجم
٦٫٧
‫م.ب.‬
Responsible Data Science Responsible Data Science
٢٠٢١
Towards Sustainable Artificial Intelligence Towards Sustainable Artificial Intelligence
٢٠٢١
Reliable Machine Learning Reliable Machine Learning
٢٠٢١
Artificial Intelligence for Finance Executives Artificial Intelligence for Finance Executives
٢٠٢١
Artificial Intelligence Artificial Intelligence
٢٠١٩
Evidence-Based Decision-Making Evidence-Based Decision-Making
٢٠١٩
Practical Time Series Analysis Practical Time Series Analysis
٢٠١٩
Szeregi czasowe. Praktyczna analiza i predykcja z wykorzystaniem statystyki i uczenia maszynowego Szeregi czasowe. Praktyczna analiza i predykcja z wykorzystaniem statystyki i uczenia maszynowego
٢٠٢٠