Practical Time Series Analysis Practical Time Series Analysis

Practical Time Series Analysis

Prediction with Statistics and Machine Learning

    • ١٫٠ - ١ تقييم
    • ‏59٫99 US$
    • ‏59٫99 US$

وصف الناشر

Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase.

Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challengesin time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly.

You’ll get the guidance you need to confidently:
Find and wrangle time series dataUndertake exploratory time series data analysisStore temporal dataSimulate time series dataGenerate and select features for a time seriesMeasure errorForecast and classify time series with machine or deep learningEvaluate accuracy and performance

النوع
كمبيوتر وإنترنت
تاريخ النشر
٢٠١٩
٢٠ سبتمبر
اللغة
EN
الإنجليزية
عدد الصفحات
٥٠٤
الناشر
O'Reilly Media
البائع
O Reilly Media, Inc.
الحجم
١١٫٥
‫م.ب.‬
Big Data, Data Mining, and Machine Learning Big Data, Data Mining, and Machine Learning
٢٠١٤
Data Science and Big Data Analytics Data Science and Big Data Analytics
٢٠١٥
Machine Learning Design Patterns Machine Learning Design Patterns
٢٠٢٠
Designing Machine Learning Systems Designing Machine Learning Systems
٢٠٢٢
Introduction to Machine Learning with R Introduction to Machine Learning with R
٢٠١٨
Data Analysis with Open Source Tools Data Analysis with Open Source Tools
٢٠١٠
Practical Fairness Practical Fairness
٢٠٢٠
Szeregi czasowe. Praktyczna analiza i predykcja z wykorzystaniem statystyki i uczenia maszynowego Szeregi czasowe. Praktyczna analiza i predykcja z wykorzystaniem statystyki i uczenia maszynowego
٢٠٢٠